
0-1-A2-B2厂家
湖南盈能电力科技有限公司,专业仪器仪表及自动化控制设备等。电力电子元器件、高低压电器、电力金具、电线电缆技术研发;防雷装置检测;仪器仪表,研发;消防设备及器材、通讯终端设备;通用仪器仪表、电力电子元器件、高低压电器、电力金具、建筑材料、水暖器材、压力管道及配件、工业自动化设备销;自营和各类商品及技术的进出口。
的产品、的服务、的信誉,承蒙广大客户多年来对我公司的关注、支持和参与,才铸就了湖南盈能电力科技有限公司在电力、石油、化工、铁道、冶金、公用事业等诸多领域取得的辉煌业绩,希望在今后一如既往地得到贵单位的鼎力支持,共同创更加辉煌的明天!
由于电源模块应用的场合也越来越广,应用场合错综复杂,电源模块的输入端时常会伴随浪涌冲击,若超过本身模块能抗的浪涌电压,模块会损坏失效,导致系统的异常,为保证系统的可靠性,电源的前端防浪涌电路如何设计?浪涌电压来源雷击引起的浪涌,当发生雷击时,通讯电路会产生感应,形成浪涌电压或电流;系统应用中负载的切换及短路故障也会引起浪涌;其他设备频繁关机引起的高频浪涌电压。据某些 机构报道,一年之中发生的浪涌电压超过应用电压一倍以上的次数就高达800余次,电压超1000V以上的就有300余次,这是一个相当大的数据,平均每天就有两次,所以浪涌防护电路是必不可少的。
结构与等效电路本文提出的新型CMRC平面结构如所示,其LC等效电路模型如所示。介质基板采用TaconicCER_1,其介电常数er=9.5,厚度.64mm。图CMRC的平面结构图LC等效电路模型滤波器特性分析主要结构参数对传输特性的影响我们对所示CMRC结构应用HFSS进行建模以及,并分析了主要结构参数对滤波器传输特性的影响。在中我们发现xy1以及y2对滤波器传输特性的影响较大,其影响特性曲线如至所示,由和可知减小x1和y1可以降低谐振频率,从而相应的可以减小低通频率范围,这是因为在等效电路模型中,减小x1或y1都可以提高单位长度的分布串联电感(L和L1)。
同样在电动汽车充电领域,RCD也作为一种基本电气保护装置被广泛应用。电动 -2015《电动汽车传导充电系统第1部分:通用要求》中有明确说明。模式一使用充电连接电缆将电动汽车与交流电网相连,剩余电流保护主要依靠建筑配电箱中的剩余电流保护装置(RCD),由于不能保证所有现存建筑物装置都配有RCD,所以这种方式十分危险,已经被禁止使用;模式二在充电连接电缆上了缆上控制保护装置(IC-CPD),IC-CPD内部具有剩余电流检测保护功能;模式三使用 供电设备,将电动汽车与交流电网直接连接,并且在 供电设备上了控制导引装置, 供电设备即交流充电桩;模式四将电动汽车连接交流电网或直流电网时,使用了带控制导引功能的直流供电设备,即直流充电桩。
在这种情况下,验证PA是否会导致发射器超出此限制需要工程师在1MHz带宽下测量不同谐波频率下的辐射。实际上,工程师们采用了一系列方法来确保PA不会违反杂散辐射要求。在研发或特性分析实验室中,工程师通常会使用频谱信号分析仪或是矢量信号分析仪直接测量杂散辐射。然而,在环境中,由于测试时间至关重要,工程师通常直接测量谐波功率并使用统计相关性来预测PA是否违反杂散辐射要求。测量调制信号的谐波需要仔细注意测量带宽,因为谐波所需的测量带宽因不同阶次的谐波而异。
从计算机鼠标到高速网络路由器等设备均能够重新编写设备的固件和硬件,从而进行现场升级。上文提及的四家公司(Atmel、赛普拉斯、Microchip和NXP)均可“胶连”逻辑,帮助减轻主器的负荷,或是无需使用外部逻辑。就的逻辑模块类型和这些逻辑模块彼此互联的方式以及与定时器、UART和IO引脚等板载模块互联的方式而言,每家公司都采取了不同的方法。因此有必要了解这些厂家各自是如何实现内部可编程逻辑的,以便为选择自己项目的解决方案出决策。
智能手机(Smartphone)和智能手表(SmartWatch)的“智能(Smart)”同时具备两层含义:“智慧、聪明”和“小巧、轻薄”。曾经的日本通过在 范围内更小型的产品,创造并拥有了较高的质量,得以引领 技术的发展。日本曾通过电子计算机、手表、携带式收音机、音乐播放器(Player)、紧凑型数码相机(CompactDigitalCamera)、集成电路录音机(ICRecorder)等一系列的的电子产品拓展了世界市场。
典型双极型晶体管VCO模型解决方案传统的测试方法是在被测VCO的输出端连接6dB衰减器、定向耦合器和机械式拉伸线,一方面满足终端连接回波损耗12dB的负载条件,另一方面通过手动调节机械式拉伸线实现360度相位的改变。但是这种方法存在着如下问题:对操作者能力依赖程度高;费时且费力;对应不同振荡频率的VCO需要相应工作频段的机械式拉伸线和/短路技术以避免出现相位调节范围无法满足要求的现象;④负载阻抗反射系数的模固定且不能灵活调整。